The Transportation Futures Survey

The Transportation Futures Survey asked respondents to choose which future the City should focus on for the Go Boston 2030 Action Plan. Beyond choosing a future, respondents also could prioritize projects and policies and identify how City streets should accommodate people driving, walking, and taking transit. Rather than being a statistically rigorous or scientific exercise, the survey was intended to collect important input as well as helping the public think about tradeoffs between different types of investments.

Survey Outreach
- E-blasts to Go Boston 2030’s email list
- Announcements in partner newsletters
- City Hall To Go truck events in June
- Distribution of paper surveys and fliers to all public libraries and BCYF community centers
- Opinion leader panel discussion event on June 6

The survey received over 4,000 responses, nearly two-thirds of which identified as Boston residents.

How did the survey work?
The survey had three main questions for respondents to answer. First, respondents could choose one of four futures that they wanted the City to focus on. This included Go Local, Go Crosstown, Go Regional, and Go Tech. Respondents then selected their top three projects and policies from each future. Finally, respondents could select one cross section that represented how they would arrange the uses for a major street in Boston.

How should we move people on our major streets?
Go Boston 2030 has set ambitious mode-shift goals and recognizes that space is limited on many of our streets. Share how you would arrange the uses for a major street in Boston. Choose one cross section.

Let’s keep driving: Maintain auto capacity

Exclusive lanes: Remove drive or parking lane

Exclusive protected bike lanes: Remove drive or parking lane

What were the results?
To make sure that Boston’s neighborhoods were represented equally in the survey results, the Go Boston 2030 team “weighted” the results by population. Some neighborhoods that were over- or under- represented relative to their share of Boston’s population. Weighting accounts for this to represented each neighborhood equally. Finally, the survey analysis combined weighted results from Bostonians with responses from those who live outside of Boston.

Unweighted Responses
Go Tech: 11%
Go Regional: 13%
Go Local: 12%
Go Crosstown: 47%
Weighted Responses
Go Tech: 11%
Go Regional: 12%
Go Local: 12%
Go Crosstown: 32%
Four Futures

Go Local was the top future selected by all respondents, including both Boston residents and non-residents.

Major Streets

Exclusive T and bike lanes was the highest priority for all respondents, including both Boston residents and non-residents.

Top Projects

Survey respondents overwhelmingly selected Pedestrian and bike-friendly main streets as the number one project. This was true of both the weighted and unweighted results from Bostonians.

Unweighted Responses

Weighted Responses

The Transportation Futures Survey

Go Local Go Crosstown Go Regional Go Tech

Go Boston 2030

Boston Transportation Department

March 2017
Regional Projects Supported by Go Boston 2030

Beyond the borders of Boston, there are a set of regional projects that are proposed, in the planning phases, or already under construction that will measurably improve the multimodal options that will help to reach the Go Boston 2030 aspirational mode shift targets.

Route 99 Bus Rapid Transit from Everett to Haymarket
In Conceptual Design
Addition of bus priority and rapid bus treatments along Broadway in Everett and Rutherford Avenue in Boston to improve transit capacity and reliability on one of the region’s most heavily-used transit corridors

Bus Rapid Transit on Route 2 from Alewife to Waltham and Lexington
Proposed
Extension of high-quality transit beyond the Alewife Red Line terminus to transit-supportive western suburbs beyond the reach of the subway

Sullivan to Kendall Transit Connection
Proposed
A new direct transit connection between Sullivan Square and East Cambridge to provide improved regional connections to jobs in Kendall Square

Urban Rail through West Roxbury to Needham
Proposed
Before/lieu of a future Orange Line extension, the existing Needham Line commuter rail would be converted to high-frequency subway-like urban rail service

Urban Rail through Melrose to Reading on the Haverhill Line
Proposed
Extension of high-quality transit northward beyond the Orange Line terminus at Oak Grove through transit-supportive communities that are only served by bus and commuter rail

The CTPS Regional Model
A Mathematical Model of Future Travel Demand
Overall, the regional travel model provides a good estimate of general population, jobs, travel, and emissions trends and changes in the Boston region, using both existing travel conditions and new planned transportation projects that are in the Boston Metropolitan Planning Organization’s regional Long-Range Transportation Plan (LRTP). No mathematical model is a perfect prediction of the future, but the model used for Go Boston 2030 provided a reliable benchmark from which to establish many of the gaps that must be overcome and how the Action Plan might address the Go Boston 2030 aspirational targets—especially targets for increased transit, walking and biking. Some neighborhoods of Boston, such as the LMA or the Seaport, may ultimately grow more rapidly than the modeling process predicts, while others may grow more slowly; however, Boston and the surrounding region are expected to continue to add residents and jobs as they have continuously over the last several decades.

The Development of this Regional Travel Model Run
Disruptive technologies, development patterns, and population trends can change quickly making forecasting the future of a city a challenge. With an awareness of this, the Boston Planning and Development Agency (BPDA), the Metropolitan Area Planning Council (MAPC), and the Central Transportation Planning Staff (CTPS) collaborated with the Boston Transportation Department (BTD) to estimate regional travel patterns in 2030. This effort used the latest modeling methods and technology and it drew from a wide range of Boston-specific data sources, ranging from individual “travel diaries” to the legal permits for buildings that have been approved for construction within the city.

First, the BPDA compiled a list of confirmed local development projects. Then MAPC used this data and other known regional development information to estimate where jobs and residents will be located in 2030. Finally, CTPS used the results of the MAPC process as well as transportation projects already in the planning process to model future travel flows.

Anticipating Growth
Go Boston 2030 land use model, net change in nonresidential square footage, 2010 – 2030

<table>
<thead>
<tr>
<th>Project</th>
<th>City/Region</th>
<th>Net Change (sq ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seaport</td>
<td>Boston</td>
<td>8,820,000</td>
</tr>
<tr>
<td>Longwood Medical Area (LMA)</td>
<td>Boston</td>
<td>3,770,000</td>
</tr>
<tr>
<td>All Boston (including areas above)</td>
<td>Boston</td>
<td>32,863,686</td>
</tr>
</tbody>
</table>

* MAPC noted that its model falls short of the new growth projected in the Seaport and the LMA; however, projected land use often includes many speculative projects, and some are likely to be delayed past 2030. Also, net change was calculated after accounting for demolition or conversion of existing floor area. Therefore, the total new growth is likely to be larger than the net change, especially in districts with large amounts of industrial or obsolete buildings that will be removed.

Project Scores

<table>
<thead>
<tr>
<th>Access 1</th>
<th>Number of households within a 10-minute walk of a rail or key bus route, Hubway station, and carshare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety 2</td>
<td>Percentage of total crashes over two years addressed</td>
</tr>
<tr>
<td>Affordability</td>
<td>Percentage of Very Low Income Households (150% below Poverty Line) that benefit from new projects (within a half mile)</td>
</tr>
</tbody>
</table>

Safety 2

Access 2
Total percentage of project (length) that benefits a long-commute area (20 minutes or more).

Affordability

Sustainability/Resiliency 1
Number of floodplains present during major rain/snow events (21 inch) per transit project

Sustainability/Resiliency 2
Reduce greenhouse gas emissions from transportation by 25% (number of potential new non-SOV users)

Governance
A larger share of capital improvement dollars will be assigned to underserved communities to achieve equitable distribution of investment in transportation infrastructure
Acknowledgements

City of Boston Team
Mayor Martin J. Walsh
Joyce Linehan, Chief of Policy
Dan Koh, Chief of Staff
Chris Osgood, Chief of Streets
Gina Fiandaca, Commissioner, Boston Transportation Department

Project Team
Boston Transportation Department
Nelson\Nygaard Consulting Associates
Interaction Institute for Social Change
Dukakis Center for Urban and Regional Policy, Northeastern University
Utile, Inc.

Design Studio for Social Intervention
Department of Play
Sasaki Associates
Firefly Partners
Alta Planning+Design
Nitsch Engineering
Mobycity
Central Transportation Planning Staff at the Boston Region MPO

Additional Contributors
MassDOT
Massachusetts Bay Transportation Authority (MBTA)
Massport
Metropolitan Area Planning Council

Photographs
All photographs have been taken in Boston except where specified. Photographs uncredited in the text have been provided by Rafael Cumbas Feliciano, Leise Jones, Allana Taranto, Kris Carter, Toole Design Group, Nelson\Nygaard, Vineet Gupta, and Alice Brown.