Appendix	Lab	Lab ID	Sample Date	Description	CAM Form Included	Lab Presumptive Certainty?	QC Performance Standards Met	CAM COMPLIANCE	ESM QAQC doc	Result?
D	GWA	84427	06/01/05	Soil - Test Pits/PT spl	Yes	NO	No	CAM Non-Compliant	Completed	Data Not Compromised - Tank 1 data not utilized other than identification of tank contents.
D	GWA	85632	07/13/05	Soil - Wells	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
D	GWA	87113	08/30/05	Soil Grid Locations/TCLP	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
D	GWA	87813	08/31/05	Soil Grid Locations	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
D	GWA	96205	06/21/06	Asbestos	No	No	N/A	NON-CAM	Completed	Data Not Compromised
Е	RC	10061	03/23/06	Packer Testing	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10068	03/23/06	Packer Testing	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10070	03/24/06	Packer Testing	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10079	03/27/06	Packer Testing	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10088	03/28/06	Packer Testing	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10094	03/29/06	Packer Testing	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10103	03/30/06	Packer Testing	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10105	03/31/06	Packer Testing	Yes	Yes	Yes	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10154	04/06/06	GW - wells	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10170	04/10/06	GW - PZ-1 - PZ-3	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	10171	04/10/06	GW - wells	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
Е	RC	11371	11/15/06	PZ-4 - PZ-7	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
F	RC	10426	05/30/06	SW / Sed	Yes	Yes	No	CAM-Compliant	Completed	Data Not Compromised
G	ALPHA	L0604251	03/29/06	Soil Gas	No	No	N/A	NON-CAM	Completed	Data Not Compromised

ES&M LAB RESULTS QUALITY REVIEW

Site:	DND Lewis Chemical		
Lab:	Alpha Analytical Laboratories	Lab ID:	L0604251
Job #:	2006-056	Sample Collection Date:	3/29/2006
Were s	ampling and analytical methods requir	ements met?	
Correct	containers used?	n/a	
Preserv	ation requirements met?	n/a	
Holding	g time requirements met?	n/a	
Correct	# of dupes, matrix spikes and matrix spike and natrix spike and natrix spikes and matrix spikes and ma	lupes, trip blanks (based on numbe	er of samples)?
Field D	up(s) vs. Environmental Sample:	RPD <51%?	
	**RPD Calc: 100*(diff btwn sample & dup)/(ave	rage of sample & dup)	
Were tl	he following analytical precision and a	ccuracy requirements met?	
Detectio	on Limits	n/a	
Reporti	ng Limits	n/a	
Action 1	Limits	n/a	
Review	v lab QC reports and project narrative. Samples were analyzed for organic co with the lab report.	umpounds in air by EPA TO-14	4A, which is not a CAM Method. A narrative report is included
Descril	be Non-Conformances		
	1. The WG235584-1 LCS has a low % recov	very for trans-1,3-dichloropropene	and a high % recovery for 1,1,2,2-tetrachloroethane.
	2. The WG235584-4 LCS has a high % reco	very for 1,2-dichloropropane.	
	3. All six samples have elevated limits of d	letection due to the dilutions requir	red by the elevated concentrationsof target compounds in the samples.
Observ	vations?		
	All notes were reviewed and do not in	dicate compromised data.	
	Analytes detected in soil gas are consis	stent with those found in ground	dwater at the site.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NE:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Environmental Strategies & Mgmt., In Laboratory Job Number: L0604251

Address: 184 West Main Street

Norton, MA 02766 Date Received: 30-MAR-2006

Attn: Mr. Thomas Sylvia Date Reported: 11-APR-2006

Project Number: 2006-056 Delivery Method: Alpha

Site: DND LEWIS

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0604251-01 L0604251-02 L0604251-03 L0604251-04 L0604251-05	SG-01 SG-02 SG-03 SG-04 SG-05	HYDE PARK, MA
L0604251-06	SG-06	HYDE PARK, MA

Authorized by:

04110614:22 Page 1 of 22

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0604251

TO14

Volatile Organic Compounds in Air

In order to comply with various regulatory requirements, the results for the analysis of Organic Compounds in Air by EPA TO-14A or TO-15 are provided in ug/m3 as well as ppbv for each sample in a sequential format.

The following samples have elevated limits of detection due to the dilutions required by the elevated concentrations of target compounds in the samples:

L0604251-01 (790X)

L0604251-02 (3,000X)

L0604251-03 (3,500X)

L0604251-04 (3,600X)

L0604251-05 (3,300X)

L0604251-06 (3,400X)

The WG235584-1 LCS has a low % recovery for trans-1,3-dichloropropene, and a high % recovery for 1,1,2,2-tetrachloroethane.

The WG235584-4 LCS has a high % recovery for 1,2-dichloropropane.

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-01 Date Collected: 29-MAR-2006 15:18

SG-01 Date Received: 30-MAR-2006

Sample Matrix: SOIL_VAPOR Date Reported: 11-APR-2006

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organic Compounds in	Air - ug	/m3		48 TO-14A	0401 12:24 PS
1,1,1-Trichloroethane	61600	ug/m3	2140		
1,1,2,2-Tetrachloroethane	ND	ug/m3	2700		
1,1,2-Trichloroethane	ND	ug/m3	2140		
1,1-Dichloroethane	4820	ug/m3	1590		
1,1-Dichloroethene	ND	ug/m3	1560		
1,2,4-Trichlorobenzene	ND	ug/m3	2920		
1,2,4-Trimethylbenzene	2360	ug/m3	1930		
1,2-Dibromoethane	ND	ug/m3	3020		
1,2-Dichlorobenzene	ND	ug/m3	2360		
1,2-Dichloroethane	ND	ug/m3	1590		
1,2-Dichloropropane	ND	ug/m3	1820		i.
1,3,5-Trimethylbenzene	ND	ug/m3	1930		
1,3-Dichlorobenzene	ND	ug/m3	2360		
1,4-Dichlorobenzene	ND	ug/m3	2360		
Benzene	ND	ug/m3	1260		
Benzyl chloride	ND	ug/m3	2030		
Bromomethane	ND	ug/m3	1530		
Carbon tetrachloride	ND	ug/m3	2470		
Chlorobenzene	ND	ug/m3	1810		
Chloroethane	ND	ug/m3	1040		
Chloroform	ND	ug/m3	1920		
Chloromethane	ND	ug/m3	812.		
cis-1,2-Dichloroethene	43900	ug/m3	1560		
cis-1,3-Dichloropropene	ND	ug/m3	1780		
Dichlorodifluoromethane	ND	ug/m3	3890		
Ethylbenzene	ND	ug/m3	1710		
1,1,2-Trichloro-1,2,2-Trifluo	or	37			
pethane	3070	ug/m3	3010		
1,2-Dichloro-1,1,2,2-tetraflu		57			
roethane	ND	ug/m3	2750		
Hexachlorobutadiene	ND	ug/m3	4190		
Methylene chloride	6280	ug/m3	2730		
p/m-Xylene	ND	ug/m3	3410		
o-Xylene	ND	ug/m3	1710		
Styrene	ND	ug/m3	1670		
Tetrachloroethene	157000	ug/m3	2660		
foluene	ND	ug/m3	1480		
trans-1,2-Dichloroethene	1970	ug/m3	1560		

Comments: Complete list of References and Glossary of Terms found in Addendum I

04110614:22 Page 3 of 22

Laboratory Sample Number: L0604251-01

SG-01

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID
					PREP :	ANAL	
	en gren i i	/					26.0
Volatile Organic Compounds :			1700	48 TO-14A	04	01 12:24	PS
trans-1,3-Dichloropropene	ND	ug/m3	1780				
Trichloroethene	50600	ug/m3	2110				
Trichlorofluoromethane	ND	ug/m3	2210				
/inyl chloride	ND	ug/m3	1000				
Volatile Organic Compounds :	in Air - pph	VC		48 TO-14A	04	01 12:24	PS
l,1,1-Trichloroethane	11300	ppbV	393.				
1,1,2,2-Tetrachloroethane	ND	ppbV	393.				
1,1,2-Trichloroethane	ND	ppbV	393.				
1,1-Dichloroethane	1190	ppbV	393.				
1,1-Dichloroethene	ND	ppbV	393.				
1,2,4-Trichlorobenzene	ND	ppbV	393.				
1,2,4-Trimethylbenzene	481	ppbV	393.				
1,2-Dibromoethane	ND	ppbV	393.				
1,2-Dichlorobenzene	ND	ppbV	393.				
1,2-Dichloroethane	ND	ppbV	393.				
1,2-Dichloropropane	ND	ppbV	393.				
1,3,5-Trimethylbenzene	ND	ppbV	393.				
1,3-Dichlorobenzene	ND	ppbV	393.				
l,4-Dichlorobenzene	ND	ppbV	393.				
Benzene	ND	ppbV	393.				
Benzyl chloride	ND	ppbV	393.				
Bromomethane	ND	ppbV	393.				
Carbon tetrachloride	ND	ppbV	393.				
Chlorobenzene	ND	Vdqq	393.				
Chloroethane	ND	Vdqq	393.				
Chloroform	ND	ppbV	393.				
Chloromethane	ND	ppbV	393.				
cis-1,2-Dichloroethene	11100	ppbV	393.				
cis-1,3-Dichloropropene	ND	ppbV	393.				
Dichlorodifluoromethane	ND	ppbV	787.				
Ethylbenzene	ND	ppbV	393.				
1,1,2-Trichloro-1,2,2-Trifl		rr					
pethane	401	ppbV	393.				
l,2-Dichloro-1,1,2,2-tetraf		FF~ .					
roethane	ND	ppbV	393.				
Hexachlorobutadiene	ND	ppbV	393.				
Methylene chloride	1810	ppbV	787.				
o/m-Xylene	ND	ppbV	787.				
o-Xylene	ND	ppbV	393.				
-	ND	Vdqq	393.				
Styrene Setrachloroethene	23200	ppbV	393.				
retrachioroethene Toluene	ND		393.				
	496	ppbV	393.				
trans-1,2-Dichloroethene		ppbV					
trans-1,3-Dichloropropene	ND	Vdqq	393.				
Trichloroethene	9430	ppbV	393.				
Crichlorofluoromethane	ND	ppbV	393.				
/inyl chloride	ND	ppbV	393.				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-02

Date Collected: 29-MAR-2006 15:20

SG-02

Date Received: 30-MAR-2006

Sample Matrix:

SOIL VAPOR

Date Reported: 11-APR-2006

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
		2		12.00			
Volatile Organic Compounds in			0000	48 TO-14A		0401 13:0	4 PS
1,1,1-Trichloroethane	1480000	ug/m3	8290				
1,1,2,2-Tetrachloroethane	ND	ug/m3	10400				
1,1,2-Trichloroethane	ND	ug/m3	8290				
1,1-Dichloroethane	26100	ug/m3	6150				
1,1-Dichloroethene	8040	ug/m3	6020				
1,2,4-Trichlorobenzene	ND	ug/m3	11300				
1,2,4-Trimethylbenzene	ND	ug/m3	7470				
1,2-Dibromoethane	ND	ug/m3	11700				
1,2-Dichlorobenzene	ND	ug/m3	9140				
1,2-Dichloroethane	ND	ug/m3	6150				
1,2-Dichloropropane	ND	ug/m3	7020				
1,3,5-Trimethylbenzene	ND	ug/m3	7470				
1,3-Dichlorobenzene	ND	ug/m3	9140				
1,4-Dichlorobenzene	ND	ug/m3	9140				
Benzene	ND	ug/m3	4850				
Benzyl chloride	ND	ug/m3	7870				
Bromomethane	ND	ug/m3	5900				
Carbon tetrachloride	ND	ug/m3	9560				
Chlorobenzene	ND	ug/m3	6990				
Chloroethane	ND	ug/m3	4010				
Chloroform	ND	ug/m3	7420				
Chloromethane	ND	ug/m3	3140				
cis-1,2-Dichloroethene	1430000	ug/m3	6020				
cis-1,3-Dichloropropene	ND	ug/m3	6900				
Dichlorodifluoromethane	ND	ug/m3	15000				
Ethylbenzene	ND	ug/m3	6600				
1,1,2-Trichloro-1,2,2-Trifluo	or	3					
oethane	16200	ug/m3	11600				
1,2-Dichloro-1,1,2,2-tetraflu		. J.					
roethane	ND	ug/m3	10600				
Hexachlorobutadiene	ND	ug/m3	16200				
Methylene chloride	15600	ug/m3	10600				
p/m-Xylene	ND	ug/m3	13200				
o-Xylene	ND	ug/m3	6600				
Styrene	ND	ug/m3	6470				
Tetrachloroethene	1920000	ug/m3	10300				
Toluene	ND	ug/m3	5730				
trans-1,2-Dichloroethene	21200	ug/m3	6020				

Laboratory Sample Number: L0604251-02

SG-02

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
Tatile Openie Comment	n. Nilas	/m2 months		40 mg 472		0401 13:04	7.0
olatile Organic Compounds			6900	48 TO-14A		0401 13104	1 15
rans-1,3-Dichloropropene	ND	ug/m3					
richloroethene	201000	ug/m3	8160				
richlorofluoromethane	ND	ug/m3	8540 3880				
inyl chloride	29000	ug/m3	3000				
olatile Organic Compounds	n Air - pph	V.		48 TO-14A		0401 13:04	PS
,1,1-Trichloroethane	272000	ppbV	1520				
,1,2,2-Tetrachloroethane	ND	ppbV	1520				
,1,2-Trichloroethane	ND	ppbV	1520				
,1-Dichloroethane	6460	Vdqq	1520				
,1-Dichloroethene	2030	Vdqq	1520				
,2,4-Trichlorobenzene	ND	ppbV	1520				
,2,4-Trimethylbenzene	ND	ppbV	1520				
,2-Dibromoethane	ND	ppbV	1520				
,2-Dichlorobenzene	ND	ppbV	1520				
,2-Dichloroethane	ND	ppbV	1520				
,2-Dichloropropane	ND	ppbV	1520				
,3,5-Trimethylbenzene	ND	ppbV	1520				
,3-Dichlorobenzene	ND	ppbV	1520				
,4-Dichlorobenzene	ND	ppbV	1520				
enzene	ND	Vdqq	1520				
enzene enzyl chloride	ND	ppbV	1520				
-			1520				
romomethane	ND	ppbV	1520				
arbon tetrachloride	ND	ppbV					
hlorobenzene	ND	ppbV	1520				
hloroethane	ND	ppbV	1520				
hloroform	ND	ppbV	1520				
hloromethane	ND	ppbV	1520				
is-1,2-Dichloroethene	361000	ppbV	1520				
is-1,3-Dichloropropene	ND	ppbV	1520				
ichlorodifluoromethane	ND	ppbV	3040				
thylbenzene	ND	ppbV	1520				
,1,2-Trichloro-1,2,2-Triflu							
ethane	2120	ppbV	1520				
,2-Dichloro-1,1,2,2-tetraf							
oethane	ND	ppbV	1520				
exachlorobutadiene	ND	ppbV	1520				
ethylene chloride	4500	ppbV	3040				
/m-Xylene	ND	ppbV	3040				
-Xylene	ND	ppbV	1520				
tyrene	ND	ppbV	1520				
etrachloroethene	283000	ppbV	1520				
oluene	ND	ppbV	1520				
rans-1,2-Dichloroethene	5350	ppbV	1520				
rans-1,3-Dichloropropene	ND	ppbV	1520				
richloroethene	37400	ppbV	1520				
richlorofluoromethane	ND	ppbV	1520				
inyl chloride	11300	ppbV	1520				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-03

Date Collected: 29-MAR-2006 15:22

SG-03

Date Received: 30-MAR-2006

Sample Matrix:

SOIL_VAPOR

Date Reported: 11-APR-2006

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
Volatile Organic Compounds	in Air - ug/	m3		48 TO-14A		0411 10:2	7 PS
1,1,1-Trichloroethane	294000	ug/m3	9500				
1,1,2,2-Tetrachloroethane	ND	ug/m3	12000				
1,1,2-Trichloroethane	ND	ug/m3	9500				
l,1-Dichloroethane	ND	ug/m3	7050				
l,1-Dichloroethene	ND	ug/m3	6910				
1,2,4-Trichlorobenzene	ND	ug/m3	12900				
1,2,4-Trimethylbenzene	ND	ug/m3	8560				
1,2-Dibromoethane	ND	ug/m3	13400				
1,2-Dichlorobenzene	ND	ug/m3	10500				
1,2-Dichloroethane	ND	ug/m3	7050				
1,2-Dichloropropane	ND	ug/m3	8050				
1,3,5-Trimethylbenzene	ND	ug/m3	8560				
1,3-Dichlorobenzene	ND	ug/m3	10500				
l,4-Dichlorobenzene	ND	ug/m3	10500				
Benzene	ND	ug/m3	5560				
Benzyl chloride	ND	ug/m3	9020				
Bromomethane	ND	ug/m3	6760				
Carbon tetrachloride	ND	ug/m3	11000				
Chlorobenzene	ND	ug/m3	8020				
Chloroethane	ND	ug/m3	4600				
Chloroform	ND	ug/m3	8500				
Chloromethane	ND	ug/m3	3600				
cis-1,2-Dichloroethene	15500	ug/m3	6910				
cis-1,3-Dichloropropene	ND	ug/m3	7910				
Dichlorodifluoromethane	ND	ug/m3	17200				
Ethylbenzene	ND	ug/m3	7560				
1,1,2-Trichloro-1,2,2-Trifl	uor						
pethane	39200	ug/m3	13300				
l,2-Dichloro-1,1,2,2-tetraf	luo						
coethane	ND	ug/m3	12200				
Hexachlorobutadiene	ND	ug/m3	18600				
Methylene chloride	ND	ug/m3	12100				
o/m-Xylene	ND	ug/m3	15100				
o-Xylene	ND	ug/m3	7560				
Styrene	ND	ug/m3	7420				
Cetrachloroethene	1150000	ug/m3	11800				
Coluene	ND	ug/m3	6560				
rans-1,2-Dichloroethene	ND	ug/m3	6910				

Laboratory Sample Number: L0604251-03

SG-03

PARAMETER	RESULT	UNITS	RDL	REF METHOD		TE	ID
					PREP	ANAL	
olatile Organic Compounds in	a Air - na	/m3 contid		48 TO-14A		0411 10:2	77 20
trans-1,3-Dichloropropene	ND ND	ug/m3	7910	40 10 144		0422 2020	
Trichloroethene	360000	ug/m3	9360				
Frichlorofluoromethane	ND	ug/m3	9790				
Vinyl chloride	ND	ug/m3	4450				
Inyl chioriae		4971113					
Volatile Organic Compounds in				48 TO-14A		0411 10:2	27 PS
,1,1-Trichloroethane	54000	ppbV	1740				
.,1,2,2-Tetrachloroethane	ND	ppbV	1740				
,1,2-Trichloroethane	ND	ppbV	1740				
,1-Dichloroethane	ND	ppbV	1740				
,1-Dichloroethene	ND	ppbV	1740				
,2,4-Trichlorobenzene	ND	Vdqq	1740				
,2,4-Trimethylbenzene	ND	ppbV	1740				
,2-Dibromoethane	ND	Vdqq	1740				
,2-Dichlorobenzene	ND	ppbV	1740				
,2-Dichloroethane	ND	ppbV	1740				
,2-Dichloropropane	ND	ppbV	1740				
,3,5-Trimethylbenzene	ND	Vdqq	1740				
,3-Dichlorobenzene	ND	Vdqq	1740				
,4-Dichlorobenzene	ND	ppbV	1740				
enzene	ND	ppbV	1740				
Benzyl chloride	ND	ppbV	1740				
romomethane	ND	ppbV	1740				
arbon tetrachloride	ND	ppbV	1740				
hlorobenzene	ND	ppbV	1740				
Chloroethane	ND	ppbV	1740				
Chloroform	ND	ppbV	1740				
hloromethane	ND	ppbV	1740				
is-1,2-Dichloroethene	3920	ppbV	1740				
is-1,2-bichloropropene	ND	ppbV	1740				
ichlorodifluoromethane	ND	yddd	3490				
thylbenzene	ND	ppbv	1740				
.,1,2-Trichloro-1,2,2-Trifluo		pppv	1740				
	5130	77daa	1740				
ethane ,,2-Dichloro-1,1,2,2-tetraflu		ppbV	1/40				
oethane	ND	Vdqq	1740				
lexachlorobutadiene	ND	ppbV	1740				
exachiorobutadiene ethylene chloride	ND	ppbV	3490				
-	ND	ppbV	3490				
/m-Xylene	ND	Vdqq	1740				
-Xylene			1740				
tyrene etrachloroethene	ND 169000	Vdqq	1740				
		Vdqq	1740				
oluene	ND	ppbV					
rans-1,2-Dichloroethene	ND	ppbV	1740 1740				
rans-1,3-Dichloropropene	ND	ppbV					
richloroethene	67100	ppbV	1740				
richlorofluoromethane	ND	ppbV	1740				
'inyl chloride	ND	ppbV	1740				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-04

Date Collected: 29-MAR-2006 15:23

SG-04

SOIL VAPOR

Date Received: 30-MAR-2006
Date Reported: 11-APR-2006

Sample Matrix:

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE		ID	
					PREP	ANAL		
Volatile Organic Compounds i	n Air - na/	m3		48 TO-14A		0411 11:0	6 PS	
1,1,1-Trichloroethane	1440000	ug/m3	9780	10. 10. 1111				
1,1,2,2-Tetrachloroethane	ND	ug/m3	12300					
1,1,2-Trichloroethane	ND	ug/m3	9780					
1,1-Dichloroethane	ND	ug/m3	7250					
1,1-Dichloroethene	8030	ug/m3	7100					
1,2,4-Trichlorobenzene	ND	ug/m3	13300					
1,2,4-Trimethylbenzene	ND	ug/m3	8810					
1,2-Dibromoethane	ND	ug/m3	13800					
1,2-Dichlorobenzene	ND	ug/m3	10800					
1,2-Dichloroethane	ND	ug/m3	7250					
1,2-Dichloroethane 1,2-Dichloropropane	ND	ug/m3	8280					
1,3,5-Trimethylbenzene	ND	ug/m3	8810					
1,3-Dichlorobenzene	ND	ug/m3	10800					
1,4-Dichlorobenzene	ND	ug/m3	10800					
Benzene	ND	ug/m3	5720					
Benzyl chloride	ND	ug/m3	9280					
Bromomethane	ND	ug/m3	6960					
Carbon tetrachloride	ND	ug/m3	11300					
Chlorobenzene	ND	ug/m3	8250					
Chloroethane	ND	ug/m3	4730					
Chloroform	ND	ug/m3	8750					
Chloromethane	ND	ug/m3	3700					
cis-1,2-Dichloroethene	812000	ug/m3	7100					
•	ND	ug/m3	8130					
cis-1,3-Dichloropropene Dichlorodifluoromethane	ND	ug/m3	17700					
	11900	ug/m3	7780					
Ethylbenzene		ug/m3	,,,,,					
l,1,2-Trichloro-1,2,2-Triflu	284000	ug/m3	13700					
pethane		ug/ms	13700					
1,2-Dichloro-1,1,2,2-tetrafl		u ~ /m2	12500					
coethane	ND	ug/m3 ug/m3	19100					
Hexachlorobutadiene	ND 25000	-	12400					
Methylene chloride	25900	ug/m3 ug/m3	15600					
o/m-Xylene	19800		7780					
o-Xylene	15400	ug/m3	7630					
Styrene	ND	ug/m3						
Tetrachloroethene	2360000	ug/m3	12200					
Toluene	80600	ug/m3	6750					
rans-1,2-Dichloroethene	ND	ug/m3	7100					

Comments: Complete list of References and Glossary of Terms found in Addendum I

04110614:22 Page 9 of 22

Laboratory Sample Number: L0604251-04

SG-04

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DI	ATE .	ID
					PREP	ANAL	
Volatile Organic Compounds	n Air - ug/	m3 cont'd		48 TO-14A		0411 11:00	5 P
trans-1,3-Dichloropropene	ND	ug/m3	8130				
Trichloroethene	1320000	ug/m3	9630				
Trichlorofluoromethane	ND	ug/m3	10100				
Vinyl chloride	5860	ug/m3	4580				
Volatile Organic Compounds i	n Air - pph	v		48 TO-14A		0411 11:00	E Pi
1,1,1-Trichloroethane	265000	Vdqq	1790				
1,1,2,2-Tetrachloroethane	ND	ppbV	1790				
1,1,2-Trichloroethane	ND	ppbV	1790				
1,1-Dichloroethane	ND	ppbV	1790				
1,1-Dichloroethene	2030	ppbV	1790				
1,2,4-Trichlorobenzene	ND	ppbV	1790				
1,2,4-Trimethylbenzene	ND	ppbV	1790				
1,2-Dibromoethane	ND	ppbV	1790				
1,2-Dichlorobenzene	ND	ppbV	1790				
1,2-Dichloroethane	ND	ppbV	1790				
1,2-Dichloropropane	ND	ppbV	1790				
1,3,5-Trimethylbenzene	ND	ppbV	1790				
1,3-Dichlorobenzene	ND	Vdqq	1790				
1,4-Dichlorobenzene	ND	ppbV	1790				
Benzene	ND	ppbV	1790				
Benzehe Benzyl chloride	ND		1790				
		ppbV	1790				
Bromomethane	ND	Vdqq	1790				
Carbon tetrachloride	ND	ppbV	1790				
Chlorobenzene	ND	ppbV					
Chloroethane	ND	ppbV	1790				
Chloroform	ND	ppbV	1790				
Chloromethane	ND	ppbV	1790				
cis-1,2-Dichloroethene	205000	ppbV	1790				
cis-1,3-Dichloropropene	ND	ppbV	1790				
Dichlorodifluoromethane	ND	ppbV	3590				
Ethylbenzene	2740	ppbV	1790				
1,1,2-Trichloro-1,2,2-Triflu			1700				
oethane	37100	ppbV	1790				
1,2-Dichloro-1,1,2,2-tetrafl		1- **	1700				
roethane	ND	ppbV	1790				
Hexachlorobutadiene	ND	ppbV	1790				
Methylene chloride	7470	ppbV	3590				
p/m-Xylene	4550	ppbV	3590				
o-Xylene	3550	ppbV	1790				
Styrene	ND	ppbV	1790				
Tetrachloroethene	348000	ppbV	1790				
Toluene	21400	ppbV	1790				
trans-1,2-Dichloroethene	ND	ppbV	1790				
trans-1,3-Dichloropropene	ND	Vdqq	1790				
Trichloroethene	246000	ppbV	1790				
Trichlorofluoromethane	ND	ppbV	1790				
Vinyl chloride	2300	ppbV	1790				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-05 Date Collected: 29-MAR-2006 15:25

SG-05 Date Received: 30-MAR-2006

Sample Matrix: SOIL VAPOR Date Reported: 11-APR-2006

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organic Compounds	in Air - ug/	m3		48 TO-14A	0411 11:44 PS
1,1,1-Trichloroethane	1590000	ug/m3	9010		
1,1,2,2-Tetrachloroethane	ND	ug/m3	11300		
1,1,2-Trichloroethane	ND	ug/m3	9010		
1,1-Dichloroethane	22900	ug/m3	6690		
1,1-Dichloroethene	14200	ug/m3	6550		
1,2,4-Trichlorobenzene	ND	ug/m3	12300		
1,2,4-Trimethylbenzene	ND	ug/m3	8120		
1,2-Dibromoethane	ND	ug/m3	12700		
1,2-Dichlorobenzene	ND	ug/m3	9930		
1,2-Dichloroethane	ND	ug/m3	6690		
1,2-Dichloropropane	ND	ug/m3	7640		
1,3,5-Trimethylbenzene	ND	ug/m3	8120		
1,3-Dichlorobenzene	ND	ug/m3	9930		
1,4-Dichlorobenzene	ND	ug/m3	9930		
Benzene	ND	ug/m3	5280		
Benzyl chloride	ND	ug/m3	8550		
Bromomethane	ND	ug/m3	6420		
Carbon tetrachloride	ND	ug/m3	10400		
Chlorobenzene	ND	ug/m3	7600		
Chloroethane	ND	ug/m3	4360		
Chloroform	ND	ug/m3	8070		
Chloromethane	ND	ug/m3	3410		
cis-1,2-Dichloroethene	134000	ug/m3	6550		
cis-1,3-Dichloropropene	ND	ug/m3	7500		
Dichlorodifluoromethane	ND	ug/m3	16300		
Ethylbenzene	ND	ug/m3	7170		
1,1,2-Trichloro-1,2,2-Trifl	uor				
oethane	562000	ug/m3	12700		
1,2-Dichloro-1,1,2,2-tetraf	luo				
roethane	ND	ug/m3	11500		
Hexachlorobutadiene	ND	ug/m3	17600		
Methylene chloride	ND	ug/m3	11500		
p/m-Xylene	ND	ug/m3	14300		
o-Xylene	ND	ug/m3	7170		
Styrene	ND	ug/m3	7040		
Tetrachloroethene	1300000	ug/m3	11200		
Toluene	ND	ug/m3	6230		
trans-1,2-Dichloroethene	ND	ug/m3	6550		

Comments: Complete list of References and Glossary of Terms found in Addendum I

04110614:22 Page 11 of 22

Laboratory Sample Number: L0604251-05

SG-05

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE	ID
					PREP	ANAL	
olatile Organic Compounds	n Air - va	m3 contid		48 TO-14A		0411 11:4	14 DC
rans-1,3-Dichloropropene	ND ND	ug/m3	7500	48 10-14A		0411, 11.4	ed ES
richloroethene	1720000	ug/m3	8880				
richlorofluoromethane	ND	ug/m3	9280				
inyl chloride	ND	ug/m3	4220				
111/1 01101140							
olatile Organic Compounds	in Air - pph			48 TO-14A		0411 11:4	4 PS
,1,1-Trichloroethane	292000	ppbV	1650				
,1,2,2-Tetrachloroethane	ND	ppbV	1650				
,1,2-Trichloroethane	ND	ppbV	1650				
,1-Dichloroethane	5660	ppbV	1650				
,1-Dichloroethene	3590	ppbV	1650				
,2,4-Trichlorobenzene	ND	ppbV	1650				
,2,4-Trimethylbenzene	ND	ppbV	1650				
,2-Dibromoethane	ND	ppbV	1650				
,2-Dichlorobenzene	ND	ppbV	1650				
,2-Dichloroethane	ND	ppbV	1650				
,2-Dichloropropane	ND	ppbV	1650				
,3,5-Trimethylbenzene	ND	ppbV	1650				
,3-Dichlorobenzene	ND	ppbV	1650				
.4-Dichlorobenzene	ND	ppbV	1650				
enzene	ND	ppbV	1650				
enzyl chloride	ND	ppbV	1650				
romomethane	ND	ppbV	1650				
arbon tetrachloride	ND	ppbV	1650				
hlorobenzene	ND	ppbV	1650				
hloroethane	ND	Vdqq	1650				
hloroform	ND	Vdqq	1650				
hloromethane	ND	ppbV	1650				
is-1,2-Dichloroethene	34000	ppbV	1650				
is-1,3-Dichloropropene	ND	ppbV	1650				
ichlorodifluoromethane	ND		3310				
		ppbV	1650				
thylbenzene ,1,2-Trichloro-1,2,2-Triflu	ND	ppbV	1030				
• •		nnhī/	1650				
ethane	73400	ppbV	1650				
,2-Dichloro-1,1,2,2-tetrafl			1.050				
oethane	ND	ppbV	1650				
exachlorobutadiene	ND	ppbV	1650				
ethylene chloride	ND	ppbV	3310				
/m-Xylene	ND	ppbV	3310				
-Xylene	ND	ppbV	1650				
tyrene	ND	Vdqq	1650				
etrachloroethene	192000	Vdqq	1650				
oluene	ND	Vdqq	1650				
rans-1,2-Dichloroethene	ND	Vdqq	1650				
rans-1,3-Dichloropropene	ND	ppbV	1650				
richloroethene	320000	ppbV	1650				
richlorofluoromethane	ND	ppbV	1650				
inyl chloride	ND	ppbV	1650				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0604251-06 Date Collected: 29-MAR-2006 15:26

SG-06 Date Received: 30-MAR-2006

Sample Matrix: SOIL_VAPOR Date Reported: 11-APR-2006

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Can

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
	i			48 TO-14A	0411 12:22 PS
Volatile Organic Compounds 1,1,1-Trichloroethane	1930000	ug/m3	9360	48 10-19%	Adl Ititt to
1,1,2,2-Tetrachloroethane	ND	ug/m3	11800		
1,1,2,2-Tetrachioroethane	ND	ug/m3	9360		
1,1-Dichloroethane	32600	ug/m3	6940		
1,1-Dichloroethene	79200	ug/m3	6800		
1,2,4-Trichlorobenzene	ND	ug/m3	12700		
1,2,4-Trimethylbenzene	ND	ug/m3	8430		
1,2-Dibromoethane	ND	ug/m3	13200		
1,2-Dichlorobenzene	ND	ug/m3	10300		
1,2-Dichloroethane	21500	ug/m3	6940		
1,2-Dichloroethane 1,2-Dichloropropane	ND	ug/m3	7930		
1,3,5-Trimethylbenzene	ND	ug/m3	8430		
1,3-Dichlorobenzene	ND	ug/m3	10300		
1,4-Dichlorobenzene	ND	ug/m3	10300		
Benzene	ND	ug/m3	5480		
Benzyl chloride	ND	ug/m3	8880		
Bromomethane	ND	ug/m3	6660		
Carbon tetrachloride	ND	ug/m3	10800		
Chlorobenzene	ND	ug/m3	7900		
Chloroethane	ND	ug/m3	4530		
Chloroform	ND	ug/m3	8380		
Chloromethane	ND	ug/m3	3540		
cis-1,2-Dichloroethene	191000	ug/m3	6800		
cis-1,2-Dichloropropene	ND	ug/m3	7790		
Dichlorodifluoromethane	ND	ug/m3	17000		
Ethylbenzene	20400	ug/m3	7450		
1,1,2-Trichloro-1,2,2-Trifl		ug/ mo	7430		
oethane	886000	ug/m3	13100		
oethane 1,2-Dichloro-1,1,2,2-tetraf		ug/mo	13100		
roethane	ND	ug/m3	12000		
roethane Hexachlorobutadiene	ND	ug/m3	18300		
Methylene chloride	23500	ug/m3	11900		
metnylene chioride p/m-Xylene	49300	ug/m3	14900		
	71900	ug/m3	7450		
o-Xylene	71900 ND	ug/m3	7310		
Styrene Tetrachloroethene	1080000	ug/m3	11600		
	46000	ug/m3	6460		
Toluene trans-1,2-Dichloroethene	46000 ND	ug/m3	6800		

Laboratory Sample Number: L0604251-06

SG-06

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA		ID
					PREP	ANAL	
Volatile Organic Compounds i	n Air - ug/	m3 cont'd		48 TO-14A		0411 12:	22 PS
trans-1,3-Dichloropropene	ND	ug/m3	7790				
Trichloroethene	1730000	ug/m3	9220				
Prichlorofluoromethane	ND	ug/m3	9640				
inyl chloride	ND	ug/m3	4380				
Volatile Organic Compounds i	n Air - ppb	V		48 TO-14A		0411 12:	22 PS
,1,1-Trichloroethane	354000	Vdqq	1720				
.1,2,2-Tetrachloroethane	ND	ppbV	1720				
.,1,2-Trichloroethane	ND	ppbV	1720				
,1-Dichloroethane	8050	ppbV	1720				
,1-Dichloroethene	20000	ppbV	1720				
,2,4-Trichlorobenzene	ND	ppbV	1720				
,2,4-Trimethylbenzene	ND	ppbV	1720				
.,2-Dibromoethane	ND	ppbV	1720				
,2-Dichlorobenzene	ND	ppbV	1720				
,2-Dichloroethane	5310	ppbV	1720				
,2-Dichloropropane	ND	Vdqq	1720				
.,3,5-Trimethylbenzene	ND	ppbv	1720				
,3-Dichlorobenzene	ND	ppbV	1720				
,4-Dichlorobenzene	ND	ppbV	1720				
•	ND	Vdqq	1720				
enzene enzyl chloride	ND	ppbv	1720				
romomethane	ND	Vdqq	1720				
arbon tetrachloride	ND	yddd Dagd	1720				
	ND		1720				
hlorobenzene		ppbV	1720				
hloroethane	ND ND	ppbV ppbV	1720				
hloroform			1720				
hloromethane	ND 48300	ppbV	1720				
is-1,2-Dichloroethene	48300	Vdqq	1720				
is-1,3-Dichloropropene	ND	ppbV					
ichlorodifluoromethane	ND	ppbV	3430				
thylbenzene	4710	ppbV	1720				
,1,2-Trichloro-1,2,2-Triflu		lo X7	1720				
ethane	116000	ppbV	1720				
,2-Dichloro-1,1,2,2-tetrafl		on on the XX	1700				
oethane	ND	ppbV	1720				
exachlorobutadiene	ND	Vdqq	1720				
ethylene chloride	6770	ppbV	3430				
/m-Xylene	11400	ppbV	3430				
-Xylene	16600	ppbV	1720				
tyrene	ND	ppbV	1720				
etrachloroethene	160000	ppbV	1720				
oluene	12200	ppbV	1720				
rans-1,2-Dichloroethene	ND	ppbV	1720				
rans-1,3-Dichloropropene	ND	ppbV	1720				
richloroethene	323000	ppbV	1720				
richlorofluoromethane	ND	ppbV	1720				
inyl chloride	ND	ppbV	1720				

Laboratory Job Number: L0604251

arameter	Value 1	Value 2	Units	RPD	RPD	Limits
Volatile Organic Com	nounds in Ni	r for sampl	0/8) 01-06	/106045	71-04	WC235584-2)
,1,1-Trichloroethane	1440	1410	ug/m3	2	25	WG233364-21
	ND	ND	ug/m3	NC	25	
1,2,2-Tetrachloroethane			J.	NC	25	
,1,2-Trichloroethane	ND 51.5	ND 48.5	ug/m3 ug/m3	6	25	
,1-Dichloroethane		362		1	25	
,1-Dichloroethene	367 ND		ug/m3	NC	25	
,2,4-Trichlorobenzene	ND	ND	ug/m3	NC	25	
,2,4-Trimethylbenzene	ND	ND	ug/m3		25	
,2-Dibromoethane	ND	ND	ug/m3	NC	25 25	
,2-Dichlorobenzene	ND	ND	ug/m3	NC		
,2-Dichloroethane	ND	ND	ug/m3	NC	25	
,2-Dichloropropane	ND	ND	ug/m3	NC	25	
,3,5-Trimethylbenzene	ND	ND	ug/m3	NC	25	
,3-Dichlorobenzene	ND	ND	ug/m3	NC	25	
,4-Dichlorobenzene	ND	ND	ug/m3	NC	25	
enzene	ND	ND	ug/m3	NC	25	
enzyl chloride	ND	ND	ug/m3	NC	25	
romomethane	ND	ND	ug/m3	NC	25	
arbon tetrachloride	ND	ND	ug/m3	NC	25	
hlorobenzene	ND	ND	ug/m3	NC	25	
hloroethane	ND	ND	ug/m3	NC	25	
hloroform	ND	ND	ug/m3	NC	25	
hloromethane	ND	ND	ug/m3	NC	25	
is-1,2-Dichloroethene	ND	ND	ug/m3	NC	25	
is-1,3-Dichloropropene	ND	ND	ug/m3	NC	25	
ichlorodifluoromethane	ND	ND	ug/m3	NC	25	
thylbenzene	ND	ND	ug/m3	NC	25	
,1,2-Trichloro-1,2,2-Trifluo	or					
ethane	ND	ND	ug/m3	NC	25	
,2-Dichloro-1,1,2,2-tetraflu	uo					
oethane	ND	ND	ug/m3	NC	25	
exachlorobutadiene	ND	ND	ug/m3	NC	25	
ethylene chloride	ND	ND	ug/m3	NC	25	
/m-Xylene	ND	ND	ug/m3	NC	25	
-Xylene	ND	ND	ug/m3	NC	25	
tyrene	ND	ND	ug/m3	NC	25	
etrachloroethene	ND	ND	ug/m3	NC	25	
oluene	ND	ND	ug/m3	NC	25	
rans-1,2-Dichloroethene	ND	ND	ug/m3	NC	25	
rans-1,3-Dichloropropene	ND	ND	ug/m3	NC	25	
richloroethene	ND	ND	ug/m3	NC	25	
richlorofluoromethane	ND	ND	ug/m3	NC	25	
	147	112	ug/mo			

Laboratory Job Number: L0604251

Parameter	% Recovery	QC Criteria	
Volatile Organic Compounds in Air LC	S for sample	(s) 03-06 (WG235584	1-1)
1,1,1-Trichloroethane	77	70-130	
1,1,2,2-Tetrachloroethane	133	70-130	
1,1,2-Trichloroethane	101	70-130	
1,1-Dichloroethane	71	70-130	
1,1-Dichloroethene	83	70-130	
1,2,4-Trichlorobenzene	85	70-130	
1,2,4-Trimethylbenzene	110	70-130	
1,2-Dibromoethane	108	70-130	
1,2-Dichlorobenzene	101	70-130	
1,2-Dichloroethane	85	70-130	
1,2-Dichloropropane	98	70-130	
1,3,5-Trimethylbenzene	109	70-130	
1,3-Dichlorobenzene	116	70-130	
1,4-Dichlorobenzene	111	70-130	
•	90	70-130	
Benzene	101	70-130	
Benzyl chloride			
Bromomethane	92	70-130	
Carbon tetrachloride	76	70-130	
Chlorobenzene	116	70-130	
Chloroethane	88	70-130	
Chloroform	105	70-130	
Chloromethane	86	70-130	
cis-1,2-Dichloroethene	84	70-130	
cis-1,3-Dichloropropene	82	70-130	
Dichlorodifluoromethane	85	70-130	
Ethylbenzene	108	70-130	
1,1,2-Trichloro-1,2,2-Trifluoroethane	91	70-130	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	86	70-130	
Hexachlorobutadiene	94	70-130	
Methylene chloride	88	70-130	
o/m-Xylene	114	70-130	
o-Xylene	118	70-130	
Styrene	100	70-130	
Tetrachloroethene	95	70-130	
Toluene	115	70-130	
crans-1,2-Dichloroethene	72	70-130	
rans-1,3-Dichloropropene	64	70-130	
Trichloroethene	82	70-130	
Trichlorofluoromethane	83	70-130	
Jinyl chloride	82	70-130	
Volatile Organic Compounds in Air LC	S for sample	(s) 01-02 (WG235584	1-4)
1,1,1-Trichloroethane	123	70-130	
1,1,2,2-Tetrachloroethane	92	70-130	
1,1,2-Trichloroethane	126	70-130	
1,1-Dichloroethane	99	70-130	
1,1-Dichloroethene	97	70-130	
1,2,4-Trichlorobenzene	81	70-130	

Laboratory Job Number: L0604251

Volatile Organic Compounds in Ai	r LCS for sample	e(s) 01-02	(WG235584-4)
1,2,4-Trimethylbenzene	108	70-130	
1,2-Dibromoethane	92	70-130	
1,2-Dichlorobenzene	93	70-130	
1,2-Dichloroethane	114	70-130	
1,2-Dichloropropane	150	70-130	
1,3,5-Trimethylbenzene	104	70-130	
1,3-Dichlorobenzene	91	70-130	
1,4-Dichlorobenzene	93	70-130	
Benzene	123	70-130	
Benzyl chloride	97	70-130	
Bromomethane	70	70-130	
Carbon tetrachloride	127	70-130	
Chlorobenzene	95	70-130	
Chloroethane	78	70-130	
Chloroform	84	70-130	
Chloromethane	108	70-130	
cis-1,2-Dichloroethene	88	70-130	
cis-1,3-Dichloropropene	112	70-130	
Dichlorodifluoromethane	77	70-130	
Ethylbenzene	92	70-130	
1,1,2-Trichloro-1,2,2-Trifluoroethane	88	70-130	
1,2-Dichloro-1,1,2,2-tetrafluoroethan		70-130	
Hexachlorobutadiene	93	70-130	
Methylene chloride	129	70-130	
p/m-Xylene	110	70-130	
o-Xylene	103	70-130	
Styrene	81	70-130	
Tetrachloroethene	85	70-130	
Toluene	100	70-130	
trans-1,2-Dichloroethene	98	70-130	
trans-1,3-Dichloropropene	94	70-130	
Trichloroethene	119	70-130	
Trichlorofluoromethane	83	70-130	
Vinyl chloride	81	70-130	

Laboratory Job Number: L0604251

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
Blank Analys			06 (WG23		0410 13:09 PS
Volatile Organic Compounds :			0.70	48 TO-14A	0410 13:0# ES
l,1,1-Trichloroethane	ND	ug/m3	2.72		
1,1,2,2-Tetrachloroethane	ND	ug/m3	3.43		
l,1,2-Trichloroethane	ND	ug/m3	2.72		
l,1-Dichloroethane	ND	ug/m3	2.02		
l,1-Dichloroethene	ND	ug/m3	1.98		
1,2,4-Trichlorobenzene	ND	ug/m3	3.71		
1,2,4-Trimethylbenzene	ND	ug/m3	2.46		
,2-Dibromoethane	ND	ug/m3	3.84		
1,2-Dichlorobenzene	ND	ug/m3	3.00		
l,2-Dichloroethane	ND	ug/m3	2.02		
,2-Dichloropropane	ND	ug/m3	2.31		
1,3,5-Trimethylbenzene	ND	ug/m3	2.46		
,3-Dichlorobenzene	ND	ug/m3	3.00		
1,4-Dichlorobenzene	ND	ug/m3	3.00		
Benzene	ND	ug/m3	1.60		
Benzyl chloride	ND	ug/m3	2.59		
Bromomethane	ND	ug/m3	1.94		
Carbon tetrachloride	ND	ug/m3	3.14		
Chlorobenzene	ND	ug/m3	2.30		
Chloroethane	ND	ug/m3	1.32		
Chloroform	ND	ug/m3	2.44		
Chloromethane	ND	ug/m3	1.03		
is-1,2-Dichloroethene	ND	ug/m3	1.98		
cis-1,3-Dichloropropene	ND	ug/m3	2.27		
Dichlorodifluoromethane	ND	ug/m3	4.94		
Cthylbenzene	ND	ug/m3	2.17		
.,1,2-Trichloro-1,2,2-Trifle	ıor				
ethane	ND	ug/m3	3.83		
,2-Dichloro-1,1,2,2-tetraf	luo				
coethane	ND	ug/m3	3.49		
Mexachlorobutadiene	ND	ug/m3	5.33		
Methylene chloride	ND	ug/m3	3.47		
/m-Xylene	ND	ug/m3	4.34		
-Xylene	ND	ug/m3	2.17		
Styrene	ND	ug/m3	2.13		
Tetrachloroethene	ND	ug/m3	3.39		
Coluene	ND	ug/m3	1.88		
rans-1,2-Dichloroethene	ND	ug/m3	1.98		
rans-1,3-Dichloropropene	ND	ug/m3	2.27		
richloroethene	ND	ug/m3	2.68		
richlorofluoromethane	ND	ug/m3	2.81		
inyl chloride	ND	ug/m3	1.28		
•					
Blank Analy			06 (WG23	5584-3)	
Volatile Organic Compounds :			4 940	48 TO-14A	0410 13:09 PS
,1,1-Trichloroethane	ND	ppbV	0.500		

Laboratory Job Number: L0604251

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II PREP ANAL
Blank Analys	is for same	nle/s) 03-(16 /WC235	584-3\	
Volatile Organic Compounds i			00 (110235	48 TO-14A	0410 13:09 PS
1,1,2,2-Tetrachloroethane	ND ND	Vdqq	0.500	40 10 14A	0410 13103 10
1,1,2,2-Tetrachioroethane	ND	ppbv	0.500		
1,1-Dichloroethane	ND		0.500		
•		ppbV ppbV	0.500		
1,1-Dichloroethene	ND		0.500		
1,2,4-Trichlorobenzene	ND	ppbV			
1,2,4-Trimethylbenzene	ND	ppbV	0.500		
1,2-Dibromoethane	ND	ppbV	0.500		
1,2-Dichlorobenzene	ND	ppbV	0.500		
1,2-Dichloroethane	ND	Vdqq	0.500		
1,2-Dichloropropane	ND	ppbV	0.500		
1,3,5-Trimethylbenzene	ND	ppbV	0.500		
1,3-Dichlorobenzene	ND	₽₽bV	0.500		
1,4-Dichlorobenzene	ND	ppbV	0.500		
Benzene	ND	ppbV	0.500		
Benzyl chloride	ND	ppbV	0.500		
Bromomethane	ND	ppbV	0.500		
Carbon tetrachloride	ND	ppbV	0.500		
Chlorobenzene	ND	ppbV	0.500		
Chloroethane	ND	ppbV	0.500		
Chloroform	ND	ppbV	0.500		
Chloromethane	ND	ppbV	0.500		
cis-1,2-Dichloroethene	ND	ppbV	0.500		
cis-1,3-Dichloropropene	ND	ppbV	0.500		
Dichlorodifluoromethane	ND	ppbV	1.00		
Ethylbenzene	ND	ppbV	0.500		
1,1,2-Trichloro-1,2,2-Triflu		* *			
oethane	ND	Vdqq	0.500		
1,2-Dichloro-1,1,2,2-tetrafl		PP-			
roethane	ND	ppbV	0.500		
Hexachlorobutadiene	ND	ppbV	0.500		
Methylene chloride	ND	ppbV	1.00		
p/m-Xylene	ND	ppbV	1.00		
	ND	ppbv	0.500		
o-Xylene	ND		0.500		
Styrene	ND	ppbV	0.500		
Tetrachloroethene		Vdqq	0.500		
Toluene	ND	Vdqq	0.500		
trans-1,2-Dichloroethene	ND	Vdqq			
trans-1,3-Dichloropropene	ND	ppbV	0.500		
Trichloroethene	ND	ppbV	0.500		
Trichlorofluoromethane	ND	ppbV	0.500		
Vinyl chloride	ND	ppbV	0.500		
Blank Analys)2 (WG235		
Volatile Organic Compounds i	n Air - ug	/m3		48 TO-14A	0331 14:13 Pt
1,1,1-Trichloroethane	ND	ug/m3	2.72		
1,1,2,2-Tetrachloroethane	ND	ug/m3	3.43		

Laboratory Job Number: L0604251

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE I PREP ANAL
Blank Analy	sis for sam	ple(s) 01-0	02 (WG23	5584-5)	
Volatile Organic Compounds				48 TO-14A	0331 14:13 1
1,1,2-Trichloroethane	ND	ug/m3	2.72		
1,1-Dichloroethane	ND	ug/m3	2.02		
1,1-Dichloroethene	ND	ug/m3	1.98		
1,2,4-Trichlorobenzene	ND	ug/m3	3.71		
1,2,4-Trimethylbenzene	ND	ug/m3	2.46		
1,2-Dibromoethane	ND	ug/m3	3.84		
1,2-Dichlorobenzene	ND	ug/m3	3.00		
1,2-Dichloroethane	ND	ug/m3	2.02		
1,2-Dichloropropane	ND	ug/m3	2.31		
	ND	ug/m3	2.46		
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND	ug/m3	3.00		
		ug/m3	3.00		
1,4-Dichlorobenzene	ND	_			
Benzene	ND	ug/m3	1.60		
Benzyl chloride	ND	ug/m3	2.59		
Bromomethane	ND	ug/m3	1.94		
Carbon tetrachloride	ND	ug/m3	3.14		
Chlorobenzene	ND	ug/m3	2.30		
Chloroethane	ND	ug/m3	1.32		
Chloroform	ND	ug/m3	2.44		
Chloromethane	ND	ug/m3	1.03		
cis-1,2-Dichloroethene	ND	ug/m3	1.98		
cis-1,3-Dichloropropene	ND	ug/m3	2.27		
Dichlorodifluoromethane	ND	ug/m3	4.94		
Ethylbenzene	ND	ug/m3	2.17		
1,1,2-Trichloro- $1,2,2$ -Triflu					
oethane	ND	ug/m3	3.83		
1,2-Dichloro-1,1,2,2-tetraf	Luo				
roethane	ND	ug/m3	3.49		
Hexachlorobutadiene	ND	ug/m3	5.33		
Methylene chloride	ND	ug/m3	3.47		
p/m-Xylene	ND	ug/m3	4.34		
o-Xylene	ND	ug/m3	2.17		
Styrene	ND	ug/m3	2.13		
Tetrachloroethene	ND	ug/m3	3.39		
Toluene	ND	ug/m3	1.88		
trans-1,2-Dichloroethene	ND	ug/m3	1.98		
trans-1,3-Dichloropropene	ND	ug/m3	2.27		
Trichloroethene	ND	ug/m3	2.68		
Trichlorofluoromethane	ND	ug/m3	2.81		
Vinyl chloride	ND	ug/m3	1.28		
Blank Analys)2 (WG235		
Volatile Organic Compounds :			12000	48 TO-14A	0331 14:13 1
1,1,1-Trichloroethane	ND	ppbV	0.500		
1,1,2,2-Tetrachloroethane	ND	ppb∇	0.500		
1,1,2-Trichloroethane	ND	ppbV	0.500		

Laboratory Job Number: L0604251

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analy	sis for sampl	e(s) 01-0	2 (WG235	5584-5)	
Volatile Organic Compounds				48 TO-14A	0331 14:13 PS
1,1-Dichloroethane	ND	ppbV	0.500		
1,1-Dichloroethene	ND	ppbV	0.500		
1,2,4-Trichlorobenzene	ND	ppbV	0.500		
1,2,4-Trimethylbenzene	ND	ppbV	0.500		
1.2-Dibromoethane	ND	ppbV	0.500		
1,2-Dichlorobenzene	ND	Vdqq	0.500		
1,2-Dichloroethane	ND	Vdqq	0.500		
1,2-Dichloropropane	ND	Vdqq	0.500		
1,3,5-Trimethylbenzene	ND	ppbV	0.500		
1,3-Dichlorobenzene	ND	ppbV	0.500		
1,4-Dichlorobenzene	ND	ppbV	0.500		
Benzene	ND	ppbV	0.500		
Benzyl chloride	ND	ppbV	0.500		
Bromomethane	ND	ppbV	0.500		
Carbon tetrachloride	ND	ppbV	0.500		
Chlorobenzene	ND	ppbV	0.500		
Chloroethane	ND	ppbV	0.500		
Chloroform	ND	ppbV	0.500		
Chloromethane	ND	ppbV	0.500		
cis-1,2-Dichloroethene	ND	ppbV	0.500		
cis-1,3-Dichloropropene	ND	ppbV	0.500		
Dichlorodifluoromethane	ND	ppbV	1.00		
Ethylbenzene	ND	ppbV	0.500		
1,1,2-Trichloro-1,2,2-Trifl	uor				
oethane	ND	Vdqq	0.500		
1,2-Dichloro-1,1,2,2-tetraf	luo				
roethane	ND	Vdqq	0.500		
Hexachlorobutadiene	ND	ppbV	0.500		
Methylene chloride	ND	Vdqq	1.00		
p/m-Xylene	ND	Vdqq	1.00		
o-Xylene	ND	ppbV	0.500		
Styrene	ND	ppbV	0.500		
Tetrachloroethene	ND	ppbV	0.500		
Toluene	ND	ppbV	0.500		
trans-1,2-Dichloroethene	ND	ppbV	0.500		
trans-1,3-Dichloropropene	ND	ppbV	0.500		
Trichloroethene	ND	ppbV	0.500		
Trichlorofluoromethane	ND	ppbV	0.500		
Vinyl chloride	ND	ppbV	0.500		

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

48. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

04110614:22 Page 22 of 22

	CHAINOFCUSTODY	SUSTODY Project Information	PAGE	SE OF		Date Rec	Date Rec'd in Labi Report Informati	Date Rec'd in Lab. 9/0A) Report Information - Data Deliverables	O eliveral	sels	ALPHA Billing th	ALPHA Job#: LO6092S	000	125
Eight Walkup Drive We TEL: 508-898-9220 F, Client Information	Eight Walkup Drive Westborough MA 01581 TEL: 508-898-9220 FAX: 508-898-9193 Client information	Project Location: blyde Park	Lyde !	Paris	573	D ADEx Crit	X SEX Criteria Checker,	ker			CI Same a		PO#:	
H.	1	Project#: 2000	41	OSE		ē 5	Defeut basedon R Cther Formats	(Defeuit based on Regulatory Cream Indicated) Other Formats:	tena Indical	(pa	Requist	Requisitory Requirements/Report Limits	ents/Repor	Limits
V.	No. 1376	1	000	ملصلته	Sign	DAddillo	D Additional Deliverables	Artimal (standard pot report) Additional Deliverables:			State /Fed	Program	Crit	Criteria
528-3	385-9700	Turn-Around Time	ne			Report	to a different	Report to afferent than Project Manager	(Sec.)		800	Brumheich	S	Apo
508-0	Email juilleling @ ROM-inc. CLO	Standard OF	O RUSH.	C RUSH (any continued a pre-approved)	ra-sporoved!)						ANALYSIS	SIIS		HOH
Project Spec	Other Project Specific Requirements/Comments:	nents:							30%	WED GASES	-	SES COS ONT		*O0Z
ALPHA LabiD	Sample ID	Col	Collection 8 Start Time	End Time	Sample	Sampler's Initials	Can	ID-Flow Controller	APT-07	Hay	TOTAL	1	Sample Comments	
10-156	56-01	3/12/06			20	AC	Soto	\$\$17576	×					1
70-	26.02		612.0	15 20	Su	AS	4410	0466426	X					/
203	56-03		07.40	1525	Sv	AC	toto	guyzt	>					_
20	56-04		ET 13	15.23	20	AV	D107	324748	7					1
So	56-05		57 13	1525	15	Ar	ישלני	7248119	,					_
90	86-06	4	0730	15 26	25	AY	0133	1288333	12					1
She	Shaded Gray Areas For Lab Use On!	b Use Only					Conta	Container Type	74			Please print completely.		clearly, legibly and Samples can not be
	Ordinary (Ordinary)	Relinquished/By:		Sate/	Date/Time	4	Beceived By	Dale Contraction	· 43	3 3 d	The 14	logged in and clock will not ambiguilles ambiguilles samples sub Alphe's Pay	logged in and furnational time clock will not start until any ambiguilles are resolved. All samples submitted are subject to Apha's Payment Tarms. See	ndtime tany ed. All e subjectio